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ABSTRACT 

Let P be a differential operator with constant coefficients in R". If u is a dis- 
tribution, the singular support of u is the complement of the largest set where u 
GC ~°. Necessary and sufficient conditinos are obtained for a closed convex set 
F to be equal to the singular support of u for some u with Pu G C °o or, equival- 
ently, for F to contain the singular support ofu for some u with Pu G Coo but 
u q~C ~. Related local uniqueness theorems analogous to the Holmgren 
theorem with supports replaced by singular supports are also given, as well as 
applications concerning/'-convexity with respect to singular supports. 

1. Introduction 

Let P be a partial differential operator  with constant  coefficients in R". We shall 

here continue the study begun in [2] and [3] o f  the singularities o f  distributions u 

with Pu ~ C °~. In  particular we shall give a necessary and sufficient condit ion on 

a closed convex set F c E" for the existence o f  a solution o f  the equat ion Pu = 0 

with sing supp u = F. (Here sing supp u is the smallest closed set such that  u ~ C ~° 

in the complement .)  The condi t ion only depends on  the largest linear subspace V 

with F + V = F and on the strength o f  P as defined in [1].  Fo r  open convex 

sets X~ c X2 c En, our  results also show that  

(1.1) u e ~ ' ( X 2 ) ,  Pu~C~°(X2) ,  u E C ~ ( X 1 ) = ~  u ~ C ® ( X )  

if  and only if all such hyperplanes intersecting X also meet Xx. This is analogous  

to the fact  that  

(1.2) u e g ' ( X 2 ) ,  Pu = 0 in X2, u = 0 in X l  ~- u = 0 in X 

if and only if all characteristic hyperplanes intersecting X also meet X t  (see 

82 
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[1, Theorem 5.3.3]). Just as (1.2) is studied by means of Holmgren's uniqueness 

theorem and a construction of null solutions, we examine (1.1) by means of a 

uniqueness theorem and a construction of solutions singular on a hyperplane. 

To be more explicit we write P = P(D) where P is a polynomial in n variables 

with complex coefficients and D = ( -  i ~ / a x t , . . . , -  iO/~xn). Let I [ be any 

norm in R" and set for a linear subspace V of ~" 

Pv(~,t) = sup{lP(~ +0)1 ;  0eV, 10[ < t}. 

It is obvious that 

Pv(~, sO < Cs"Pv(~, O, s > 1, 

the constant C depending only on the degree m of P. Thus we change Pv by at most 

a fixed factor when passing to another norm in R". When V = R" we write 

ff(~, t) instead of ffv(~, t). With constants depending only on n and m we have 

(1.3) CIP(~, t) < ( 2  ]P<:)(ff)12 t21=l) '/2 < C2P(~,t), 

as follows from the finite dimensionality of the space of polynomials in R" of 

degree m. (Cf. [1, sections 3.1 and 3.3].) Hence our notation agrees essentially 

with that used in [1] and we can change the definition to the middle term in (1.3) 

whenever this is more convenient. 
Now set 

(1.4) av(V ) = inf lim inf/~v(~, t)/P(~, O. 
t> l  ~ o o  

This is a continuous function of V in the sense that 

(1.5) 

if 
(1.6) 

,r~,(v) < ,rl,(W) + Cd(V, W) 

d(V, W) = sup inf I x - Y I" 
x ~ v ,  l x l= t  yeW, lYI=X 

To prove (1.5) we first observe that 

(1.7) I P(¢ + o) - e(~ + n)l --< cP(¢,  t)[ 0 - n]/t  

if l 0] < t, I t/I < t. If  0 ~ V and [ 01 < t  we choose 7 E W with 171 = 1 °l  and 

10 - 7[ < td(V, IV), and obtain 

] P(¢ + O) l < [ P(¢ + 7)] + Cd(V, W)P(¢, O, 

which gives (1.5). 

THEOREM 1.1. Let V be a linear subspaee of  R". I f  there is a distribution u 
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with P(O)u~C°~(~ ") and ~ ~ s i n g s u p p u c  V then av(V' ) = 0 where V'  is 

the orthogonal space of V. Conversely, i f  av(V' ) = O, one can for every non- 

negative integer grind u ~ CU(~ ") with P(D)u = 0, sing supp u = V and u q~C ~+ I(N) 

i f  N is any open set intersecting V. 

Note that (1.5) implies that the set of subspaces V with av(V' ) = 0 and of 

fixed dimension is closed in the standard topology of the Grassmannian, and it 

is independent of the choice of  norm in R n. Theorem 1.1 and additional uni- 

queness theorems will be proved in sections 2, 3 and 4. 

In connection with a study of results of the form (1.1), F. John [6] has dis- 

cussed "H61der estimates" for solutions of certain partial differential equations, 

mainly elliptic ones. These are estimates of some semi-norms of u in X by geo- 

metric means of semi-norms of u in X~ and in X2 which are valid for the solutions 

of the equation P(D)u = 0 in X2. In section 5 we add a study of such estimates. 

They are closely related to the properties of P as an operator in R "+k when the 

last k variables are regarded as parameters. Various properties of a~, and some 

examples are discussed in section 6. 

2. Preliminaries 

The definition (1.4) of ae(V ) is not suitable for the proofs. In fact, t and log I ~] 

will always have comparable size there. To obtain an equivalent but more useful 

definition we shall apply the Tarski-Seidenberg theorem (see [1, appendix]). 

LEMMA 2.1. I f  ae(V ) = O, it follows that there are positive constants b, fl, r 1, p 

such that for any t > 1 and r > r~tP one can find ~ ~ "  with {4[ = r and 

(2.1) /~v(~, t) < bt-PP(~, t). 

LEMMA 2.2. I f  av(V) ~ 0, it follows that there are positive constants b, r x, p 

such that for t > 1 and I~l > rlt ° we have 

(2.2) ff v(~, t) > bff(~, t). 

PROOF OFLEMMA 2.1. A routine application of the Tarski-Seidenberg 

theorem shows that the continuous function 

a(t) = lim infffv(~ , t)/P(~, t) 

is an algebraic function of t for large t. Since a(st) < Cs'~a(t)for s _>- 1 and 
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inft>la(t) = a v ( V ) =  0, it follows that l im in f ,~oa ( t )=  0. Hence the Puiseux 

series expansion of  a(t) shows that 

a(t)t p < b, t > 1 

for some rational number/3 and constant b > 0. The set 

M = {(r , t ) ; t  > 1,Pr(¢ , t  ) < bt-P_P(~,t) for some ~ " ,  [~l = r} 

is semi-algebraic by the Tarski-Seidenberg theorem, and if t > 1 we have (r, t) ~ M 

for arbitrarily large values of r. It follows that there is a piecewise algebraic 

function r(t) such that (r, t) ~ M if r > r(t) and t > 1, which proves the lemma. 

PROOF OF LEMMA 2.2. Let 0 < b < trv(V ). Then the function 

a(t) = sup {I ~ I; Pv(~, t) < bP(~, t)} 

is finite for t > 1 and it is a piecewise algebraic function of t by the Tarski-Seiden- 

berg theorem. Hence there are positive constants p, rj such that a(t) < rxt" i f  

t > 1, which proves Lemma 2.2. 

By combining the lemmas we conclude that av(V) = 0 if and only if 

(2.3) lim infPv(~ , 2 log]~ ])/ff(~, 2 log l~ 1) = 0 
~ o o  

for some (for all) 2 > 0. This is the form required in what follows. Note that (2.3) 

is related to the localizations at infinity used for example in I-5]. 

3. Solutions with a convex s'ngular support 

In this section we shall prove a result containing the second half of Theorem 1.1 : 

THEOREM 3.1. Let F be a closed convex set in R n and V a linear subspace 

o f E  n with F + V = F. I f  ae(V')  = O, one can for every non-negative integer # 

find u~CU(E ") with P(D)u=O,  s ingsuppu = F and u (~C~+I(N) for  every 

open set N intersecting F. 

For  the proof, we denote by F the set of  all u E C ~ (E") with P(D)u = 0 such 

that u ~ C°°(R" / F). With the weakest topology making the inclusion F ~ C~(E ") 

and the restriction F ~ C°°(E" \ F) continuous, F is a Fr6chet space. To prove 

the theorem, it suffices to show that {u ~F ;  u ~C ~+1 (N)} is of  the first category 

in F for every open set N with N c3 F :~ J~, for we need only consider countably 

many such sets N. It is no restriction to assume that 0 E N c3 F. If  Theorem 3.1 

were false, it would therefore follow from the closed graph theorem that for some 
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such N there is a continuous restriction map F ~  C~+~(N). Thus there must 

exist compact sets K~ c R n and K2 c R" \ F and an integer v such that 

f 'u 0 l =<  'uj + supl '.l), (3.1) 
]~,l=t~+l \ 1~, _~.~ Kt I~,l~v K2 , 

Theorem 3.1 will therefore be proved if we show that this estimate cannot hold 

if ae(V') = 0 and K2 c R" IV. To do so we shall take u as a superposition of  

exponential solutions which is estimated by means of the following two lemmas 

contained in Lemmas 2.2 and 2.3 of [4]. 

LEMMA 3.2. There exists a sequence of  functions ~p ~ ~ C~ (~) such that 

(i) s u p p q ~ N c ( - 1 , 1 ) ;  ~N_>_0, fc~Ndt= 1; 

(ii) J'l dk(°N/dtkldt < ( 2 N )  k, 0 < g - < N ;  N = 1,2, . . . .  

In the following lemma we write 

• ~(~) = R-'(~N(~,/R). . .  c~N(~v/R), ~ ~ R', R > 0, 

and we set I ¢[ = maxlCj]. 

LEMMA 3.3. Let F be an analytic function with IF I < M in the polydisc 

fiR = {( e C v, ](I < 2R}, and set 

uN(x) = .(', ei<X'¢>F(~)~ (~)d¢. 

Then uN (O) = 1 i f  F = 1 and in general we have 

(3.2) I x I*lu'(x) I --< (3N/R) kM, 0 < k < N. 

Next we shall discuss how to produce suitable exponential solutions to average 

when fly,(4, t)/fi(~, t) is small. We can change the coordinate system so that V is 

defined by x'  = 0 i fx  = (x',x"), x '  = (x 1, . . . ,x,),  x" = (x~+ 1, . . . ,x , )  is a splitting 

of the coordinates in two groups. By (1.3) we can change the definition of ff 

and -Pv' so that from now on we take instead 

ff(¢,t) = ( E l  P(')(¢)12t2[~l) t/2, P'(¢,t) = ( ~ I P(')(¢)12t21"[) t12. 
a" =0  

LEMMA 3.4. For suitable positive constants ~o,C,Y (depending only on n 

and m) the inequality 

(3.3) ff'(~, t)/P(~, 0 < ~ < ~o 

implies that there exists an analytic map 0 ~ ((O) f rom f2~t to C ~ such that 
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(i) ~'(0) = 4~ + 0 where 4~ ~ ~v and [ 4'0 - 4'] ~ t, 
( i i )  :< 
(iii) P(~(O)) = O. 

PROOF. It is no restriction to assume that t = 1 and that ¢ = 0. I f  n > v + 1 

we choose a finite number of  vectors 0~, .-., 0k ~ R "-v such that no polynomial 

of  degree m vanishes in ~ ~ x (ROj) = g~" for every j without vanishing identically. 

Some of  the polynomials 

~ +  ~ ~ --, ~'(~', ~+ ~0~) 

will then satisfy the hypotheses of the lemma with e replaced by a constant times ~. 

We may therefore assume that n = v + 1. 

By (3.3) with 4 = 0, t = 1, we have for a suitable normalization of  P 

C, =< sup{ lP(U, (n) [ ;  1, I¢,1--< 1}; [P(¢',0)[ ____ cze, lU[ < 1. 

(We use the notation 4 for real variables and ( for complex variables.) By the 

maximum principle it follows that for 0 < 3 < 1 

c,3" < sup{lP(4',¢.)l; 14'1-<- 1, I¢.1 =< 3} = M o. 

We have 
n - 1  

X 18P(()/O(il < C3Mo; 1('1 < 2, 1(,1 < 3, 
1 

and in view of  Lemma 3.1.7 in 1-1], there is some real , '  with I 'l 1 and r 

with 0 < r < 3 such that 

[P(¢,c.)l -- C,M  when I¢.1 = r. 

It follows that 

(3.4) IP(¢',¢.)1--- C,*Mo/2 >= C4C,fi"[ 2 if 1¢.1 = r and 1 ¢ ' - r / ' ]  C3 < C4[2. 

I f  we choose 3 so that C4C16"/2 = 2Cz~, the equation P(4', ~,) = 0 must have at 

least one root ~, with ]~,[ < r < 6 for every real 4' with [ 4' - r/'[ < C4]2C3. 

B y L e m m a  A.2 in [4], the polydisc {~'; [ { ' -  r/'] < C4]2C3} contains a polydisc 

with real center ~ ,  [~ol < 1, and fixed radius 2y where the discriminants with 

respect to (,  of  the irreducible factors of P are all different from 0. In view of (3.4), 

it follows that for if' in this polydisc, we can choose an analytic function (,(~') 

with P(~', ( ,)  = 0 and ] ~, [ < r < 6. The lemma is proved. 

PROOF OF THEOREM 3.1. Recall that we only have to show that (3.1) does 
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not hold for any v and compact sets K 1 c R n and K 2 c [~nlv provided that 

(2.3) is valid with V replaced by V'. Let ;t be a fixed large positive number and 

let e > 0. We can then find 4 and t arbitrarily large so that 

t = ).log 141, ff'(4, t)/P(4, t) < e. 

According to Lemma 3.4, we take an analytic solution ((0) of the equation 

P(((O)) = 0, 0 ~ f~t,  and set with R = ?t and an integer N to be chosen later 

(3.5) u(x) = f ei(x, ~(°) >¢~ff (O)dO. 

It is clear that P(D)u = 0, and 

D~u(O) = f ¢(0) ~;(°)d° = 4 ~ +oct]  4[~' t-b 

so that 

I+l =<c  ID u(0)l , 
I,~I-<~+I 

Using (ii) in Lemma 3.4 we obtain 

Y: suplD~u[ < Cexp(Ctet/m)( 1 ÷141)" =< C,(1 +[4l )  "+t/z 
lal=<u K~ 

if C2+ 1/m < 1/2. 

It remains to consider the last sum in (3.1). To do so, we estimate 

e+<+ ,, ¢o> + +<+,., +,,>f ei<+ ,,o >((O).e/<+,., +,,+o)- ~,, >+~ (O)dO D~u(x) 

using Lemma 3.3. Since I x' l  > (5 > 0 in K2 this gives 

(3.6) S = E sup[ D'u(x) ] < C(3N/6vt)N[ 41 *exp(Ctgl/ra). 
lal-_<v K2 

We choose N = [tSyt/3e] and obtain 

S < Cexpt(v/2 + Ce TM - 67/3e) 

which is bounded as 4 ~ ~ if 2 > 6ev/~? and e TM < tS?/6Ce. It follows that (2.3) 

and (3.1) are in contradiction for large 2, so the proof is complete. 

As an application, we obtain an improvement of Theorem 1.4.5 of [3] : 

THEOF~-~a 3.5. I f X  is an open set in R n which is P-convex with respect to singular 

supports, it follows that the minimum principle is valid for  the boundary distance 

d(x, ~X)  on every affine subspace parallel to a linear subspace with ae(l/ ')  = 0. 
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We refer to [3] for the terminology and the derivation 

from Theorem 3.1 for the case F = V. 

of Theorem 

89 

3.5 

4. Fundamental solutions and uniqueness theorems 

The first part of Theorem 1.1 can be stated as follows: IfP(D)u ~ C ~, u E C~(GV) 

and ae(V') # O, then u E C ~. Thus for general u the singularities of u in C V 

together with all those of  P(D)u determine uniquely all the singularities of  u. 

We shall prove more general uniqueness theorems in this section by constructing 

appropriate fundamental solutions. 

We have seen in section 2 that if ap(V') ~ 0 it follows that for some constant 

c > 0 and every 2 > 0 

(4.1) lira infP r,(4, 2 log[ ~ [)/P(~, ~ log I ~ [) > c. 
~-- '  Qo 

Our first lemma interprets this condition in terms of the zeros of P. It is interesting 

to compare it with Lemma 3.4. 

LEMMA 4.1. Let 0 ~ ~o ~ V' ,  ] qo [ = 1, and let 3, c be fixed positive constants, 

6 < 1. Then there exist positive constants c~, y depending only on 3, c, n, m, such 
that 

(4.2) fly,(4, t)[P(~, t) > c 

implies that for  some Oe V' with 0 < [0[ < 6t we have 

(4.3) t P ( ~ + i t ~ l ° + z 0 + ~ ) l  >= clP(~,t  ) i f z e R ,  Iz] = 1; ~eC",  I~t----<2~'t- 

PROOF. We may assume that t = 1 and can drop the variable t from the 

notation then. By (4.2) and Taylor's formula we have 

cP(~) < Pv,(O < CPv,(~ + i~°). 

Lemma 3.1.7 in [1] shows that we can choose 0 e  Y'  with 0 < 101 < 6 and 

ffv,(~ + iq °) <= C' t P(~ + #1 ° + zO) I, }z ] = 1. 

For small ]~] it follows that when ]z I = 1 

[P(~ + iq ° + zO + Ot > caf fv ' (~+iq°)-C1 [([ P(~+iq °+zO) > ( c , - C 2  [ ([)P(~). 

This proves the lemma. 

REMARK. Conversely the inequality (4.3) for ( = 0 already implies an estimate 
of  the form (4.2) so (4.3) expresses all the information given by (4.2). 
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Before developing further technical details we shall indicate the main ideas in 

our arguments. To construct a fundamental solution one usually interprets the 

integral 
( 2 r 0 - h i  ei(.~,~> p(~)-i d~ 

by taking it over some cycle, avoiding the zeros of P, which is close to R'. Some- 

times the cycle is taken close to the cycle defined by 

--. ~ +/),(log[ ~ I)r/° 

where t/° is fixed in R" / 0 and ~. is large. The modulus of  the exponential is then 

j~j-~<~,~o> so the fundamental solution becomes roughly ,~(x,t/°) times dif- 

ferentiable at x (thus a distribution of  order - 2 ( x , t / ° )  when (x, t /°)  < 0). 

See for example [2, section 5] and the references given there. We shall improve 

the construction by replacing the value of e ~<'~'~>/P(~) at a point on the cycle 

by an average over the zero free region provided by Lemma 4.1. This will be done 

so that Lemma 3.3 can be used to improve the estimates. The number N there 

will also be taken of  the order of  magnitude log[ ~l" To achieve this we must 

work in steps where N is fixed so the integration will be split in countably many 

pieces by means of  a partition of unity similar to those used in [2]. 

First we shall define for arbitrary (4, t) satisfying (4.2) and integers N > 0 

a measure/zcnt in C" which will replace the Dirac measure at ~ + ittl °. To do so we 

use the function q~ of  Lemma 3.3 with n variables and set for u e Co(C") with 

the notations of Lemma 4.1 

u(~)d#~,,(~) = (2~z) - t  u(~ + iol ° + e'°O + z)O~(z)dz. 

It is clear that 0 can be chosen as a measurable function of  ~ for every fixed t. 

By Cauchy's integral formula we have for analytic u 

f f (4.4) u(~)dp¢~(~) = u({ + ittl ° + z)q~,,(z)dr. 

Lemma 3.3 gives the estimate 

(4.5) [ f e'<XX>/P(OdpZ[,,(()l < C(3N/vt[ xl)ke'(alx'l-(x"°>)/P({,t),  

0 < k < N .  

When t > 1 it follows that 
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(4.6) [ f e'<Xa>/P(~)dv~,,(O[ <__ Cexp( t (6 lx '  [ - (x,~C)) - N) if 
l 

[xl > 3Ne/?t. 

We shall later on choose N proportional to t and this estimate is then valid in a 

set independent of t. 

Next we shall construct the required partition of unity. First choose as in [2] 

a function q ~ C ~ ( C )  such that [Re([  < 3/4 if ~csupp  ~b, Y,q~(~-j) = 1 if 

]Im ([ is sufficiently small and 

I e¢(C)leCl c,l mCl', ¢ v = 1,2 ,  .. 

When ( ~ C" and ( Im (, ]m ( )  < (Re (, Re ( )  we can define ((,  ~) t/ ,  as an analytic 
function which is positive when Im ( = 0, and we set 

~j (~)  = ~ ( ( ~ ,  ~ ) ' / ¢  _ j ) .  

The following lemma is obvious if we note that ( ( , ¢ )  = ] ¢]2(1 + O([ t/I/I ¢ I)), 
with the Euclidean norm. (See also Lemma 4.4 in [-2].) 

LEMMA 4.2. There is a positive constant c 2 and a positive integer Jo such 

that when J im(  I < c2[Re(I 1/2 

(i) j - 4 / 5 < [ R e ( [ 1 / z < j + 4 / 5  i f ( ~ s u p p S j  a n d j > j o ,  

(ii) r, ¢,~(~) = a if t~ I ~ range, 
jo 

(iii) ]0~bj(()[ <= c, l~m¢l ' lcl  -.+')/~ i f  j > jo , v > O. 

In particular it follows from (i) and (iii) that ]~l ~4,A¢)1 is rapidly decreasing, 

if  ¢--, oo while Jim ([ = O(log[ (i)  as will be the case in the constructions below. 

The functions ipj will therefore behave essentially as if they were analytic. 

Choose two positive numbers 2 and e and set 

(4.7) t~ = 21ogj 2 = 2).log j, N~. = [etj]. 

By (i) in Lemma 4.2 we have for j > Jo 

(4.8) I tj - 21ogl~lt < C2/j when ~ + i t f l  ° ~ supp~, i .  

With Z~ denoting a minor modification of ~bj which will be defined later on we 

set for large j 

Ej(x) = (2u)-" f Zj(~ + itfll°)d~ (e'<X"> ]P(()d#~,~,((). (4.9) 
d d 
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We shall prove that EEi  converges in ~ '  to a parametrix for P, and we shall study 

its differentiability properties. 

First note that by (4.4) we obtain after differentiation under the integral sign 

ff P(D)Ej(x) = (2n)-" Xj(~ + - jq  je "%tjt ' lug"" 

The integration with respect to ~ can be shifted to the real axis by means of  

Cauchy's integral formula, which gives P(D)Ej = vj + wj where 

v /x )  = ( 2 r r ) - " f  f zj(~)e'<X'¢+°c~:'j(Od~dz, 

wax)=-2i(2,0-"f f f <ffZj(~ + itq°),rl 
O<t<tj 

Nj Thus vj is the inverse Fourier transform of the convolution Z j* ~ , j .  We wish 

Zvj  to be equal to the Dirac measure 6o apart from a C °o term. This is true if 

(4.10) E Z j * ~ - 1  has compact support. 

To satisfy this condition we start from the functions ~j  of  Lemma 4.2 and set 

Zj(~ + i~/) = O~(~ - 0 + itl)Om(O)dO 

where k = j + l  i f t ~ l  > j 2  and k = j - 1  i f ] ~ I < j 2 .  S ince~b~(~+i t l )=  1 if 

I I ~ l l / 2 - j l  <1 /5  and [ . [ < e 2 1 ~ ]  '/2, both definitions give Zj(~ + i t / ) =  1 if 

11 ¢ ] , / 2  j] < 1/10, [r/] < c z ] ¢1" 12 and j > J say. It follows that Zi~ C oo and 

it is clear that (i)-(iii) in Lemma 4.2 and (4.8) remain valid with tO i replaced by Zi 

and a change of the constants involved. Since for large I ¢] with j < ] ¢1~/2 < j + 1 

~¢~ a~NJ+~, we obtain (4.10) from the sum in (4.10) is equal to (~kj+~,j+l).(I)rtj* ~,~+, 

(i) and (ii) in Lemma 4.2. The fact that (iii) in Lemma 4.2 remains valid with ~kj 

replaced by Zj shows that for all ~ and v we have on compact sets 

O'wj = O(j-v). 

Hence ]ETw j ~ C °°, and ]~°vj - 30 E Coo with convergence in S~' by (4.10). 

When u ~ C~ ° (R") we have 

<E2,u ) = (2=)-" f + itjrl°)d~ f 
and, since fi is rapidly decreasing in the support of the integrand, the sum E<Ej, u> 
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is absolutely convergent. Hence E = Y~°Ej exists in ~ '  and P ( D ) E -  50 e C ~°. 

We could therefore subtract a C OO function from E and obtain a fundamental 

solution. 

We shall finally use (4.6) and the analogous bounds for the derivatives with 

respect to x to study the differentiability of E. By (4.8) which is valid with Sj 

replaced by Z j, we can estimate I ~ I by exp (t j/2) and obtain for large j 

I O~Ej(x)l < C~exp(tj((n + lal)/2 + 5Ix ,  I - <x,r/o> - e)) if I xl > 3ee/?. 

Hence ED~Ej is uniformly convergent when 

2(n + l a l ) +  22(51x' I - < x , q  °> - e )  < - 1, ixi > 3ee/~,. 

For any v it follows that E e C" for large 2 in the set defined by 

alx'l-<x,n°>-~[x]/2o <= o, 3ee/? < Ixl _-< 6ee/7. 

Now choose a cutoff function Z e C~ (R") which is 1 when ] x I < 3ee/y and 0 

when Ix I > 6ee/2;, and set F = xE. Then we have P(D)F = 5 + co where a)e Coo 

for I xl < 3ee/7 and co e C" for large 2 in the set where a ix'l  - - x 1/20 
< 0. Replacing 3ge/? by e we have proved 

THEOREM 4.3. Assume that V is a linear subspace of R" with tre(V' ) # O. 

Choose rl ~ V' with [ rl ] = 1 and 6 with 0 < 5 < 1. For ~ > 0 and positive integers v, 

one can then find F~,ve~'(~") such that Ix] < 2e in suppF~,~, the difference 

P(D)F~,~ - 6o ~ coo{ ; I xl < ~} and 

Here x' is the residue class of x mod V and ~ is the constant in Lemma 4.1. 

I f  u is a distribution with P(D)u = feCoo for ix[ < 3e, we have for Ix[ < e  

u = u * (6o - P(D)F~,v) + f *  F,,~. 

The last term is in Coo when Ix I < e. I f  u e Coo in a neighborhood of  

(4.11) {x;e =< --< 2e, al 'l + <x,n>- lx]/2o >__ 0}, 

it follows that u ~ Coo in a neighborhood of 0 if we let v + oo. This will give the 

following theorem which contains the first half of Theorem 1.1. 

THEOREM 4.4. Let (at,. . . ,~b~eC'(X) where X is an open set in fie" and let x ° 

be a point in X where ddpl(x°),...,dc~(x °) are linearly independent. Assume 

that av(W ) # O for the space W spanned by dqbx(x°),...,d~bv(x°), l f  u e ~ ' ( X ) ,  

P(O)u ~ C°°(X) and u ~ Coo(X_), 
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X _  = {x ~ X ;  Cj(x) < Cj(x °) f o r  some j = 1, . . . ,  v), 

then u ~ Coo in a neighborhood o f  x °. 

PROOV. We may assume that x ° = 0 and that Cj(x) = x i + o(I x]), as x ~ 0 .  

Take ~/ = ( -  1 , . - . , - 1 , 0 ,  ..., 0) with v coordinates equal to - 1. When 

x ~ sing supp u we have by hypothesis x j > - o(]x  [) for j = 1, ..., v, hence I x, - J  xj l[ 

= o([ xJ) then, which gives 

alx'l+<x,,l>- lxl/2o <= Ix, I -  Ix l+(o(Ixl)- lxl/2o) 
l 1 

=< o(I x I) - Ix l/20 < 0 

i fe  < [ x l < 2e and e is small. It follows that u c C OO in the set (4.11) and the proof  

is therefore complete. 

We can now prove another result stated in the introduction: 

THEOREM 4.5. Let  X 1 c X z be open convex sets in ~". Then  an open set 

X c X2  has the proper ty  

(4.12) u E ~'(X2),  Pu ~ Coo(X2), u ~ Coo(X1) ~- u e Coo(X) 

i f  and only  i f  f o r  every hyperplane  H with trp(H') = 0 the set X 1 intersects 

every affine hyperp lane  paral le l  to H which meets X .  

PgooF. The necessity follows immediately from Theorem 1.1. The sufficiency 

is proved by substituting Theorem 4.4 with v = 1 for Holmgren's uniqueness 

theorem in the proof  of Theorem 5.3.3 in [1]. 

Theorem 4.3 also gives a converse of Theorem 3.1: 

THEOREM 4.6. Let  F be a closed convex set in R ~ and let V be the largest  

vector space with F +  V =  F. Then  u ~ ' ( ~ " ) ,  sing suppu c I" impl ies  

u e C o o ( R " ) / f a A v ' )  ~ 0. 

PROOF. If  0 ¢ F there is a proper cone in •"/V containing the image of  F there. 

We may therefore assume that F is the inverse image of  such a cone. The set of  

points where Theorem 4.3 can be used to show that u ~ Coo is obviously a cone 

since e may be any positive number. In the proof  of Theorem 4.4 we saw that it 

contains a neighborhood of 0 so it is all of  ~". 

Minimal linear spaces V with ae(V') = 0 are minimal carriers of singularities 

also among sets which are not linear: 

THEOREM 4.7. Let  V be a linear subspace o f  R" such that ap(V')  = 0 but  
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a~,(W') ~ O for every linear subspace W c-- V. I f  P(D)u ~ C ~ and sing supp u ~ V, 

it follows that either singsuppu = V or u ~ C °°. 

PROOF. Let V be defined by x '  --- 0 and assume that for some r > 0, we have 

u~Coo when Ixl < r .  Thus ueCoo at ( x ' , x " ) i f  lx"l < r  or Ix ' l  ~ 0 i f  a is a 

linear function of x '  it follows that u ~ Coo where 

dp(x) = ] x"l 2 - r 2 - a(x') < O. 

(Here we are using the Euclidean norm.) In fact, if qS(x)< 0 we have either 

x '  ¢ 0 or Ix" l < r .  We have g r a d e  = ( - a , 2 x " )  so i f x  o = ( 0 , x ; ) ,  [x•] = r, 

the plane spanned by these gradiends is V ' @ I~xo. The orthogonal space 

W = { x e  V; (X, Xo) = 0} and since ap(W') :/: 0 it follows from Theorem 4.3 

that u e C oo in a neighborhood of the closed ball of radius r. Hence u ~ C ~°. 

Theorems 4.6 and 4.7 may seem to indicate that for solutions of P(D)u = 0, 

the singularities must propagate along linear spaces in the sense that for every 

x~ s ingsuppu  there is a linear space V with ap(V') = 0 such that {x} + V 

sing supp u. This is known to be true in a number of  cases (see [2], [3]) and others 

will be given below, but it is false in general. For, consider the differential operator 

P(D) = D2D 3 in ~3. Set u = (5(xl)(f(x2) + g(x3) ) where f (x2)  = 1 when ] x21 < 1 

and 0 otherwise, g(x3) = - 1 when 2 < x3 < 3 and 0 otherwise. Then we have 

P(D)u = 0 and 0 e sing supp u but no straight line through 0 is contained in 

sing supp u. 

A positive result to be improved in section 5 is given in 

THEOREM 4.8. Let V be the intersection of  all linear spaces W with 

ae(W'  ) = O. I f  u ~ ' ( X ) ,  P(D)u~COO(X) and x es in g su p p u ,  it follows that 

the component o f  x in ({x} + V) c3 X also belongs to singsuppu. 

PROOF. If  there exists a polygon with vertices x = Xo, x l , ' " ,  xN in ({x} + V) C3X 

such that xN ~ sing supp u, then repeated application of Theorem 4.5 shows that 

xs_ 1, "", Xo ~ sing supp u. This proves the theorem. 

If  V = {0}, the theorem is of course trivial. On the other hand, if ae(V') = O, 

we obtain complete information on the possible singular support of a solution. 

5. Geometric mean estimates 

In this section we shall consider the quotient /~v(~, t)/P(~, t) for all ~ so we 
introduce 

(5.1) a°(V) = inf infPv(~, t)/P(~, t). 
t > l  
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THEOREM 5.1. Let X be an open subset of  •" with 0 ~ X and V a linear sub- 

space with orthogonal space V'. Then the followin# conditions are equivalent: 

(i) For every semi-norm q in Coo(X) with support sufficiently near O, there 

are semi-norms q1 in C(X) and q2 in Coo(X \ V) and a constant p with 0 < p < 1 

such that 

q(u) < (ql(u) + q2(u))l-Pq2(u)P; u ~ Coo(X), P(D)u = O. 

(ii) There exist semi-norms ql and q2 in C°°(X) and Coo(X \ V) respectively 

and a constant p with 0 < p < 1 such that 

l u(0) I _< ql(u)l-pq2(u)p; u ~ coo(x), P(D)u = o. 

~°(v') ~ o. 
I f  Y is an open set in Rk for  some k, then 

(iii) 
(iv) 

(5.2) 

(v) 

u e ~ ' ( X  x Y), P(D)u = O, u ~Coo((X I V) x Y ) ~  ueCoo(X × Y). 

(5.2) is valid for  some open non-void set Y c R, k, k > 1. 

PROOF. We have trivial implications ( i ) ~  (ii) (and (iv)=~ (v)). Fur the rmore  

Theorem 1.1 shows that  (iii), (iv), (v) are equivalent. By inspecting the arguments 

already used in sections 3 and 4 we shall show that  (ii) =~ (iii) and that  (iii) =~ (i). 

(The implication ( v ) ~  (i) is also easily obtained by functional  analysis so we 

would not  have to use Theorem 1.1.) 

(ii) =~ (iii). Assume that  a°(V ') = 0. I f  

a(t) = inf f f  v,(~, t)l/~(~, t), 

we have a(st) < Csma(t), s > 1, so the hypothesis infa(t)  = 0 implies lim inft_. ® 

a(t) = 0. Hence it follows from the Tarski-Seidenberg theorem that  a ( t ) ~  0 

as t ~ oo and that  for  every e > 0 one can find r~, q ,  x so that  when t > t~ there 

is some ~ with ] 4[ < rat ~ for  which 

(5.3) -~v'(4, t)/ff(~, t) < e. 

F o r  such ~ and t we consider the solution (3.5) o f  the equation P(O)u = 0. We 

have u(0) = 1 and for some p 

ql(u) < C(t + 141)" exp(Ct~l/m) • 

The semi-norm q2(u) is a bound for  v derivatives o f  u in a compact  set K2 c IV, 

so ] x '  I > 6 > 0 in Kz if V = {(x', x"), x '  = 0}. Hence we can use the estimate (3.6) 

and obtain with the same choice o f  N as in section 3 
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q2(u) < C(t + ] ~1 )~ exp (Cte l;,,, _ 6~,t/3e). 

When z is so small that 

( 1  - p)C~ ~/"+ p(Ce ~/'' - 6~,/3e) < O, 

that is, Ce 1/m < pay/3e, we conclude that (ii) is not valid. 

To prove the remaining implication (iii)=> (i), we shall reconsider the para- 

metrix construction in section 4. It is considerably simpler now since Lemma 4.1 
N and the definition of Pea are valid for all ¢ and t > 1. With t > 1 and a positive 

integer N we set 

(5.4) Et,N(x) = (2~z)-" j d{ j e '<X'~>/e(Odpe~(r,). 

The integral converges in ~ ' ,  that is, Et, N is actually defined by 

= (27r)-"f  d~ f ~t(- ~)/P(()d~¢:,(O, u~ C:(~"). (5.5) ( E , , N , u )  

Et. N is a fundamental solution, for by (4.4) and Cauchy's integral formula 

<Et,N,P ( O)u> (2~) "f  d ~ f t / (  - = - - r,)cl&,,(r,)N 

= (2=)-.f ~ ( - { - i t q ° - z ) t ~ : ( z ) d { d z  

(2re) f a ( ~ ) d ~ f  s = -" ~r,('c)d'c = u(0). 

The proof of Theorem 3.1.2 in [1] shows that Et,N is regular in the sense of 12]. 

When estimating E,.u it is convenient to assume that 

f ff(~)-I d~ < oo .  

This condition is no restriction in the proof of Theorem 5.1 since it is always 

fulfilled after multiplication of P by an elliptic factor of  degree > n. (See sec- 

tion 6.) By (4.5) the integral (5.4) is then convergent and 

I <= Cexp(t(6lx'[ - (,x,q°)) - N) if Ix I > 3Ne/yt. 

Let e be a positive number and set N = [yet/3e]. Then we obtain for large t 

I E,,N(x)] < C e x p t ( a l x ' ] - < x , : > - r l x l m )  if e < l x  ] <2e.  

Let g e C~ ° be equal to 1 when I xl < 4e/3 and 0 when I xl > 5 /3 Then choose 
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01 and O 2 e C ~  ° with suppor t  in {x; e <  [x I < 2 e }  so that  01 + ~'2 = 1 in a 

ne ighborhood  of  supp dz and 

6[x'[ - (X, tl ° )  - y [x ] /18  < 0 in supp 01 

tSlx'l - (x ,  rl °)  - 7] x] /20 > 0 in supp ~, 2 . 

Set 0)j = -OjP(D)O~E).  Then  it is clear that  P(D)(zE) = 8 o -  0 ) 1 -  0)2, and 

for  some positive constants  a and A we have as t --* oo 

(5.6) 

(5.7) 

eat0)l and e'-At(02 are  bounded  in N,m, 

6 [ x ' [ -  ( x ,q  °)  - - 7 ] x ] / 2 0 >  0 in supp r.o 2 . 

I f  P(D)u = 0 in X and e is small,  we obtain u = o21 • u + o2 2 • u in a neigh- 

bo rhood  of  0. F o r  any semi-norm q in C * of  a small  ne ighborhod of  0 it follows 

tha t  

q(u) < e-"tql(u) + eatq2(u) 

where ql is a semi-norm in C~(X)  and q2 is a semi-norm in C~°(N), 

2v = < I x l  < x ' l  + < x , , ° >  - x]/20 > 0}. 

We may  assume that  q~ > q2. Choosing t so that  e ( x + a ) t  = ql(u)/q2(u) we obtain  

with p = a/(A + a) 

(5.8) q(u) < 2ql(u)l-Pq2(u)P. 

I t  is now easy to prove  a result containing the implicat ion (iii) ~ (i) in Theo-  

rem 5.1 : 

THEOREM 5.2. Let ~bl, . . . ,~bvECl(X) where X is an open set in ~", and let 

x ° be a point in X where d~bt(x°),...,dd),(x °) are linearly independent. Assume 

that @(W) # 0 for  the plane W spanned by dqbl(x°),...,dOv(x°). I f  U is a 

sufficiently small neighborhood of  O and q a semi-norm in C~(U),  one can find 

semi-norms ql in C(X) and q2 in C~(X_) ,  

x _  = (x e x ; CAx) < Cj(x °) for  some j},  

and a number p with 0 < p < 1 such that 

(5.9) q(u) < (ql(u) + q2(u)) 1-pq2(u)p; u E C~°(X), P(D)u = O. 

PROOF. As in the p r o o f  of  Theorem 4.4 it follows f rom (5.8) that  
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q(u) < qo(u)l-Pq2(u)P 

where qo is a semi-norm in C~(X). Replacing X by a smaller neighborhood Y 

of 0 we can assume that qo is a semi-norm in E If  Y is suMciently small we have 

qo(u) < qx(u) + q3(u), u ~ C~(X), P(D)u = 0, 

where ql is a semi-norm in C(X) and qa a semi-norm of  the same kind as qz. 

In fact, by Theorem 4.4 we can choose Y so that P(D)u -~ 0 in X and u ~ C~(X_) 

implies u ~ C~(Y), and then the assertion follows from the closed graph theorem. 

This completes the proof. 

I f  we combine Theorems 5.1 and 5.2 with the proof  of  Theorem 4.5, we obtain 

THEOREM 5.3. Let X 1 c X 2 be open convex sets in ~" and let X be an open 

subset o f  X z. Then the following conditions are equivalent: 

(i) For every hyperplane H with a°e(H ) = 0 the set Xx intersects every 

affine hyperplane parallel to H which meets X.  

(ii) For every semi-norm q in C~(X) there exist semi-norms qt in C~(X~) 

and q2 in C(X2) such that for  some p > 0 

(5.10) q(u) < (ql(u) + q2(u))~-Pql(u)P; u ~ C~(X2), P(D)u = O. 

Similarly repetition of the proof  of Theorem 4.8 gives 

THEOREM 5.4. Let V be a subspace o f  R" such that a~(W) ~ 0 when W is 

any subspace which is not orthogonal to V. Let X 1 be an open set in R", Xo ~Xz, 

and let X I  be an open subset which meets the component o f  xo in X 2 n (V + {xo}). 

Then there is a neighborhood X o f  xo such that (ii) in Theorem 5.3 is valid. 

Inspection of the proof  shows that the semi-norms in (5.10) will only depend 

on m and n in addition to a lower bound for a°e(W) when d(W, V') is bounded 

away from 0. (See the introduction for this notation.) If P is replaced by a power 

of  P one can keep the constant 7 in Lemma 4.1 and therefore the exponent p in 

(5.10), and it suffices to multiply the semi-norms in (5.10) by a constant factor. 

This makes it possible to repeat the arguments used in section 1.5 of [3] to extend 

Theorem 1.5.1 there. Introduce 

Iw, vl= sup I<x,¢>l/lxll  I 
xeW,~eV 

which is equivalent to d(W, V'). Let B be a compact family of linear subspaces of 

R" and denote by L(P) the set of all localizations of P at infinity as defined in [-2]. 

Thus the elements of L(P) are the limits of the polynomials ~ ~ P(~ + ~l)/P(q) as 
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r / ~  ~ .  Now assume that for every e > 0 there is a constant c(e) > 0 such that 

for every Q ~ L(P) there is some V e B for which 

(5.11) a~2(W ) > c(~) when I W, V[ > e. 

Under these hypotheses we have 

THEOREM 5.5. I f  U ~ ~ ' (X )  and Pu ~ C°°(X) it follows that for every 

x ~ sing supp u there is some V ~ B such that the component of x in X c~ (V + {x}) 

also belongs to singsuppu. 

We omit the rather tedious details of the proof. The theorem is of course 

trivial if {0} ~ B so the result is void in general. However, it contains Theorem 4.8 

above as well as Theorem 1.5.1 of  [3] and Theorem 7.2 of [ 2 ] .  

6. Remarks and examples 

I f  L(P) is the set of  all localizations of  P at infinity, it is clear that 

(6.1) a°(V) < ae(V) = inf a~(V). 
Q eL(P) 

We shall therefore begin by studying only the function a°(V). 

o >  o LEMMA 6.1. I f  p is the principal part of P, then ap = a e. 

PROOF. By definition we have 

ffv(~, t) > a°(V)P(~, t), t > 1. 

I f  we replace ~, t by s~, st and let s ~ + ~ after division by s m, it follows that 

p~(~, t) => ~°(v)p(¢, t) 

which proves the lemma. 

LEMMA 6.2. I f  p is a homogeneous polynomial then a°(V) > 0 i f  and only 

i f  neither p nor any localization of p at infinity vanishes identically in V. 

PROOF. The necessity is obvious since a ° (V) > 0 implies ~ (V) > 0 for every 

localization q in view of (6.1). To prove the sufficiency it is enough to show that 

the inequality 

(6.2) ff(~, t) < Cfiv(~, t) 

is valid when t = 1, for both sides are homogeneous in (4, t). When t ~ 0 we 

have/~v(¢, t) > 0 because p(~ + ~) would otherwise vanish identically for ~/e V 
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so the highest order term P01) with respect to ~/would have to vanish in V. Hence 

(6.2) is valid when t = 1 and ~ is in a compact  set. I f  (6.2) were not valid we 

could therefore find a sequence ~j -~ ~ such that/3v(~ i, 1)//~(~ i, 1) ~ 0, I f  q is a 

corresponding localization at infinity we have q ( r / )=  0 for all ~/E V, which 

contradicts the hypothesis. 

REMARK. I f  p = 0 in V then the localization of p at infinity in V also vanishes 

in V so the condition that p ~ 0 in V could be dropped. 

Combinat ion of (6.1) with Lemmas 6.1 and 6.2 gives 

THEOREM 6.3. I f  av(V ) # 0 it follows that the principal part of  Q does not 

vanish identically in W if Q ~ L(P) and W is a linear space with dim W = dim V 

sufficiently close to V. I f  a°e(V) ~ 0 the principal symbol of P does not vanish 

identically in W either. 

REMARK. When n = 2 it is easy to show that conversely a°(V) # 0 if  the 

principal symbol of  P is not identically 0 in V. 

I f  Q ~ L(P) is not a constant and if 

A(Q) = {r/~ N';  Q(~ + tr/) = Q(~)}, 

which is a linear space, it follows that av(A(Q)) = 0. The same is true for the 

space generated by A(Q) and a real zero of  the principal part  of  Q. By Theorem 1.1 

it follows that the equation P(D)u = 0 has a solution with sing suppu = A'(Q) 

or a characteristic hyperplane in A'(Q) (with respect to Q). The singular support 

may also be taken as the limit of  such spaces. Thus Theorem 1.1 improves the 

results proved in section 3 of  [2]. In section 6 of [2] we concluded that unique 

continuation of  the singularities of  solutions of  P(D)u = 0 across the hyperplane 

(x,  N )  = 0 requires that  a neighborhood of N is non-characteristic for every 

Q EL(P).  This is also a special case of  Theorem 1.1 in view of Theorem 6.3. 

We shall now give examples which show that the condition is not always suf- 

ficient. 

EXAMPLE 6.4. Let q be a real homogeneous polynomial and V a linear subspace 

of ~q", n _>_ 3, such that q does not vanish identically in V but a°(V) -- 0. A suf- 

ficient condition for this is that 0 # q'0/) ~ V' for some real 1/ # 0 with q01) = 0. 

In  fact, ~ ~ (~,q'O1)) is then a localization of q at infinity. I f  ~ = 0 in V and 

_ 2 (0 ,  . . - ,  0 ,  1, 0 ) .  n _> 3 we may therefore take q(~) = ~1 z + ... + ~ - 2  - ~ - 1 ~ ,  ~/ = 
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By Theorem 4.1.9 in I'll we can choose a hypoelliptic operator P(D) such that the 

principal part is q*. Since o crq(V) = 0 it follows from Lemma 6.1 that a°(V) = O, 

although the principal part of P does not vanish identically in V, if V is not gen- 

erated by ft. In particular we conclude that in general the continuation of solutions 

of a hypoelliptic equation across a non-characteristic hyperplane is not "H61der 

continuous" if the number of variables exceeds 2. 

EXAMPLE 6.5. Let P(~), ~ ~ R", be independent of ~, but as a function of 

i t ,  "", 4,-1 be the hypoelliptic polynomial in example 6.4. The only localizations 

of P at infinity are then constants or translations of P, so their principal symbols 

do not vanish identically in W if W is close to V. (We include the 3, axis in V 

also.) But a~,(V) = tr°(V) = 0, which shows that to examine if ap(V) # 0 it 

does not suffice to consider the characteristics of all localizations at infinity. 

The results proved in this paper agree well with the classification of differential 

operators defined in [1, section 3.3]. 

THEOREM 6.6. I f  P' and P" are equally strong then tre,(V ) = 0 is equivalent 

to %,, (V)  = O. 

PROOF. By Theorem 3.3.2 in [1] the hypothesis implies that 

C1 <_ P"(~,t)/P'(~, t) < C2; ~ ~ ~' ,  t > 1. 

From section 2 we know that o'p,(V) = 0 if and only if for some sequences ~j ~ 

in R" and tj ~ ~ in R with tj = O([ Cjl ~) for every e > 0 

P/,(~j, t~)/P'(¢j, t~) -~ o. 

Passing to a subsequence we may assume that the limits 

a '(~) = lim P'(~j + tj~)/P'((i, ti) , Q"(~) = lira P"(~j + tfi)/P'(~ i, ti) 

exist. In fact, the supremum of ] P'(~j + tj~)[//3,(~j, tj) when ~ varies over the 

unit ball is 1, and that of ] P"(~J + ti~)]//~'(¢J, tj) lies between C1 and C2. The 

limits are therefore not identically 0 and 

C,0'(~,  t) < 0"(~, t) < C20'(~, t), t > 0. 

Letting t ~ 0 we conclude that Q" = 0 when Q' = 0. Since Q' = 0 in V it follows 

hat Q" = 0 in V, so that Pv(~j, tj)/P (~j, tj) 0 as j ~ Go. Hence ae,, (V) = 0 

and the theorem is proved. 

THEOREM 6.7. I f  P = P1P2 then al,(V) > 0 (resp. a°(V) > O) i f  and only iJ 

ae,(V)ae:(V ) > 0 (resp. a°,(V)a°2(V ) > 0). 
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PROOF. This is an immediate consequence of Lemma 3.3.1 in [1]. 

THEOREM 6.8. I f  P is semi-elliptic then a °(V) > 0 i f  and only i f  the principal 

part of P does not vanish identically in V. 

PROOF. The necessity follows from Theorem 6.3. To prove the sufficiency we 

recall that semi-ellipticity means that for certain positive integers m~,...,m~ 

we have with 1~: m I = 22~j/mj 

P(~) = 

where 

I~:ml=<t 

p ( O =  22 a ~ # O , O # ~ E R  n. 
[~:m I = 1  

Assume that m I . . . . .  mv>m~+ 1 > ... > m,,, and set x ' =  (x~,.. . ,xO, 

x" = (xv+ 1, ...,x,,). We wish to prove that i f N  = (N ' ,N") ,N '  # 0, then 

(6.3) ~ [P¢~)(~)I2t 2N < C ~[  <D,N>JP(~)[2t 2j, t > 1. 
a j 

To do so we note that if we assign the weight [c~: m] +j/m~ to ~ t ~  then all 

terms are of weight < 2 and the terms of weight 2 are 

22[ <D, N'>Sp(~) [ 2t 2j 

in the right hand side. Since N'  # 0 this sum is # 0 when (4, t) # 0. Hence 

 m'+t  m'Z C 12t2 . 
1 

It follows that (6.3) is valid for another C if t + l ~1 is large enough, which proves 

the theorem. 

That "HOlder estimates" are valid for the continuation of solutions of semi- 

elliptic equations across a non-characteristic surface also follows from the ar- 

guments of F. John [6] in view of the analyticity of the solutions along the inter- 

section of the characteristic planes proved in [1, section 4.4]. 

Next we consider operators with simple characteristics although the results 

of [2], [3] are already complete for them. 

THEOREM 6.9. I f  P is of  principal type, we have ae(V) > 0 i f  and only i] 

a°e(V) > 0 and this is true i f  and only i f  

p'(tl) q~ V' when tl ~ R n I 0 and p(tl) = O. 

PROOF. Since an operator of principal type is as strong as its principal part 
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([1, Theorem 3.3.7]) we may assume that P is homogeneous in view of  Theorem 

6.6. But then the theorem follows from Lemma 6.2 and the remark following 

the lemma. 

Finally we give an example containing some new information. 

EXAMPLE 6.10. Let p be a real homogeneous polynomial of  degree m with 

P '(O # 0 for ~ ~ •" \ 0, and let 

P = p 2 + q + r  

where q is homogeneous of  degree 2m - 1 and r is of degree 2m - 2. Then 

a) tre°(V) > 0 if and only if p'(~) ~ V' for all ~ E ~" \ 0 with p(~) = 0. 

b) aj,(V) > 0 if and only i fp ' (Q  ~ V' for all ~ E R" 1 0 with p(~) = Imq(~) = 0. 

Since tr°(V) > 0 =~ a°(V) > 0 the necessity follows from Theorem 6.9 in case a). 

To prove the necessity in case b) we assume that r/~ R n \ 0, p(r/) = Im q(t/) = 0. 

Replacing t / by  - r / i f  necessary we may assume that q(t/) < 0. If  q(t/) = 0 we 

note that 

P(~ + ttl)t2-2m ~ <p'(tl),~>2 + <q'(tl),~> + c, t -~ oo, 

SO the right hand side is a localization of  P at infinity and p'(r/)~ V' by 

Theorem 6.3. If  q( t / )< 0, on the other hand, we choose 0 ¢ ~n \  0 so that 

(p'(r/), O> z + q(r/) = 0 and obtain 

p(~ + t=tl + tO)t 3 -4m --, 2<p'(r/), ~><p'(t/), 05 + C 

and conclude again that p'(t/) ¢ V'. 

In proving the sufficiency, we assume that V is defined by 4" = (4, + 1 , ' " ,  ~,) = 0. 

In case a) we note that p does not vanish identically in V since p'(~) would then 

be in V' for all ~ ~ V. Hence Pv(~, t) > ct TM so there is nothing to prove except 

when t ] I ~ 1 is small. Then we have to prove that for t > 1 

(6.4) I 
The estimate of I P(¢) I is obvious and it implies the others outside a conic neigh- 

borhood of  the zeros of p. Since 

 o2p2Io¢ = 2 IOp/O jt >o 
I ! 

at the zeros of p, we obtain the required estimate of tEl ~] 2.,-2 

neighborhood F where we also require that Op/O~' # 0. Hence 

in a conic 
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t ~ ] P~P/O~i[ < t ~ 12p~p/O(i + Oq/O~j I + Ct] ~ [ 2 m - 2  ~_~ C , ~ V ( ~  ' t) 
1 1 

which gives (6.4) in F. In case b) we have to supplement the preceding argument by 
observing that if F' is a closed cone where Imq # 0, we have ] ~]2,.-1 + ]p(~)]2 

_-< C[P(Q[ in F ' w h e n  ~ is large. Hence t lp(~)l l~[m-1 =< c]  P(~)] when t 2 __< I~] 

and ~ ~ F'. 
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