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ABSTRACT

Let P be a differential operator with constant coefficients in R”. If # is a dis-
tribution, the singular support of «is the complement of the largest set where u
€C®. Necessary and sufficient conditinos are obtained for a closed convex set
T to be equal to the singular support of u for some « with Pu € C* or, equival-
ently, for I to contain the singular support of # for some 4 with Pu € C* but
u ¢ C®. Related Jocal uniqueness theorems analogous to the Holmgren
theorem with supports replaced by singular supports are also given, as well as
applications concerning P-convexity with respect to singular supports.

1. Introduction

Let P be a partial differential operator with constant coefficients in R”. We shall
here continue the study begun in [2] and [3] of the singularities of distributions u
with Pu e C®. In particular we shall give a necessary and sufficient condition on
a closed convex set I' = R" for the existence of a solution of the equation Py = 0
with singsuppu = I'. (Here sing supp u is the smallest closed set such that u e C*
in the complement.) The condition only depends on the largest linear subspace V
with I' + ¥V =T and on the strength of P as defined in [1]. For open convex
sets X, = X, < R", our results also show that

1.1) weP'(X,), PueC>(X,), ue C*(X,) = ue C(X)

if and only if all such hyperplanes intersecting X also meet X ;. This is analogous
to the fact that

(L.2) ue2'(X,), Pu=0in X,, u=0in X; >u=0in X

if and only if all characteristic hyperplanes intersecting X also meet X, (see
82
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[1, Theorem 5.3.3]). Just as (1.2) is studied by means of Holmgren’s uniqueness
theorem and a construction of null solutions, we examine (1.1) by means of a
uniqueness theorem and a construction of solutions singular on a hyperplane.

To be more explicit we write P == P(D) where P is a polynomial in n variables
with complex coefficients and D = ( — i6/0x,, -+, — id[0x,). Let l I be any
norm in R" and set for a linear subspace V of R"

P&, = sup{| PC +0)|; 6V, |0] < 1.
It is obvious that
P&, st) S CmPE D, s=1,

the constant C depending only on the degree m of P. Thus we change P, by at most
a fixed factor when passing to another norm in R". When V = R" we write
P(¢,1) instead of Py(¢, ). With constants depending only on n and m we have

(1.3) C. P, 1) < (Z]|PPO|2 P2 < C,PE,

as follows from the finite dimensionality of the space of polynomials in R" of
degree m. (Cf. [1, sections 3.1 and 3.3].) Hence our notation agrees essentially
with that used in [1] and we can change the definition to the middle term in (1.3)

whenever this is more convenient .
Now set

(1.4) op(V) = inf lim inf P,(&, /P&, 1).

t>1 &=

This is a continuous function of V in the sense that

(1.5) op(V) £ op(W) + Cd(V, W)
if
(1.6) d(V,W) =  sup inf |x—y|.

er,|x]=1 yeW. |y =1

To prove (1.5) we first observe that
(L.7) | P& +0) — P& +m)| < CBE,1|6—n]/t
if |0] <1, |y £t 1f eV and |0] <t we choose ne W with |n| = |6 and
|0 —n| < td(v,w), and obtain
| PE +0)] <|PE+n)| + CaV, WP, 1),
which gives (1.5).

THEOREM 1.1. Let V be a linear subspace of R". If there is a distribution u
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with P(D)ueC®(R") and & # singsuppu c V then op(V') =0 where V' is
the orthogonal space of V. Conversely, if 6p(V') = 0, one can for every non-
negative integer u find u e C*(R") with P(D)u = 0, singsuppu = V and u ¢C**'(N)
if N is any open set intersecting V.

Note that (1.5) implies that the set of subspaces V with op(V') = 0 and of
fixed dimension is closed in the standard topology of the Grassmannian, and it
is independent of the choice of norm in R". Theorem {.1 and additional uni-
queness theorems will be proved in sections 2, 3 and 4.

In connection with a study of results of the form (1.1), F. John [6] has dis-
cussed ‘‘Holder estimates’ for solutions of certain partial differential equations,
mainly elliptic ones. These are estimates of some semi-norms of u in X by geo-
metric means of semi-norms of u in X, and in X, which are valid for the solutions
of the equation P(D)u = 0 in X,. In section 5 we add a study of such estimates.
They are closely related to the properties of P as an operator in R"** when the
last k variables are regarded as parameters. Various properties of o and some
examples are discussed in section 6.

2. Preliminaries

The definition (1.4) of gp(V) is not suitable for the proofs. In fact, t and logl ¢ ]
will always have comparable size there. To obtain an equivalent but more useful
definition we shall apply the Tarski-Seidenberg theorem (see [ 1, appendix]).

LemMa 2.1. Ifop(V) =0, it follows that there are positive constants b, B, vy, p
such that for any t > 1 and r > r t?one can find £ € R" with {5[ = r and

@.1) Py(&,1) < bt TPP(E,1).

Lemma 2.2. Ifop(V) # O, it follows that there are positive constants b, ry, p
such that for t > 1 and |€| > r t° we have

(2.2) P,(&,0) > bP(E,1).
Proor oF LEMMA 2.1. A routine application of the Tarski-Seidenberg
theorem shows that the continuous function
a(t) = liminf P, (¢, )/ P(, 1)

[Sads}

is an algebraic function of ¢ for large t. Since a(sf) < Cs™a(f) for s = 1 and
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inf,, ja(t) = op(V) = 0, it follows that liminf,, ja(f) = 0. Hence the Puiseux
series expansion of a(f) shows that

at’ <b, t>1
for some rational number § and constant b > 0. The set

M = {(r,f); t > 1, P (&, ) < bt P P(&,t) for some EeRY,

¢l =1}

is semi-algebraic by the Tarski-Seidenberg theorem, and if t > 1 we have (r,f) e M
for arbitrarily large values of r. It follows that there is a piecewise algebraic
function r(¢) such that (r,f)e M if » > r(¢) and ¢ > 1, which proves the lemma.

ProoF OF LEMMA 2.2, Let 0 < b < op(V). Then the function
a(t) = sup{|¢|; P&, 1) < bP(E,1)}

is finite for ¢ > 1 and it is a piecewise algebraic function of ¢ by the Tarski-Seiden-

berg theorem. Hence there are positive constants p, r, such that a(f) < rt* if
t > 1, which proves Lemma 2.2,
By combining the lemmas we conclude that ¢,(¥) = 0 if and only if

(2.3) lim inf B, (¢, 2log | )/ P(¢, Alog| ¢]) = 0
[4ad]

for some (for all) A > 0. This is the form required in what follows. Note that (2.3)
is related to the localizations at infinity used for example in [5].

3. Solutions with a convex s'ngular support

In this section we shall prove a result containing the second half of Theorem 1.1:

THEOREM 3.1. Let [ be a closed convex set in R* and V a linear subspace
of R®" with U+ V =T. If ap(V') = 0, one can for every non-negative integer u
find ueC*(R") with P(D)u =0, singsuppu = I' and u ¢ C**'(N) for every
open set N intersecting T'.

For the proof, we denote by F the set of all u e C* (R") with P(D)u= 0 such
that u e C*(R" \ I'). With the weakest topology making the inclusion F — C*(R")
and the restriction F — C®(R" \ I'} continuous, F is a Fréchet space. To prove
the theorem, it suffices to show that {u e F; u eC** ' (N)} is of the first category
in F for every open set N with N NT" # &, for we need only consider countably
many such sets N. It is no restriction to assume that 0 N NI If Theorem 3.1
were false, it would therefore follow from the closed graph theorem that for some
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such N there is a continuous restriction map F — C***(N). Thus there must
exist compact sets K, = R” and K, = R* \ I" and an integer v such that

(3.1 | D°u(0)| <c( 2 sup|Du]+ )Y sup[D“u|) ueF.

la] = u+1 |zl v K>

Theorem 3.1 will therefore be proved if we show that this estimate cannot hold
if 6p(V") =0 and K, =« R"\V. To do so we shall take u as a superposition of
exponential solutions which is estimated by means of the following two lemmas
contained in Lemmas 2.2 and 2.3 of [4].

LemMaA 3.2. There exists a sequence of functions ¢ € CF(R) such that

@ suppp”=(-1,1); ¢ 20, [¢'dr=1;

() [|d*oMattlat< N, 0 kSN N =12,

In the following lemma we write

OF (&) = RT$™E,/R) -+ ¢"(E./R), LeR’, R>0,

and we set | £| = max|¢;].

LemMA 3.3. Let F be an analytic function with ]Fl < M in the polydisc

= {{eC", |¢{| <2R}, and set
W) = | ORI

Then u®(©0) = 1 if F = 1 and in :qeneral we have
(3.2) |x|“|u"x)| = GN/R'M, O0=<k=<N.

Next we shall discuss how to produce suitable exponential solutions to average
when B, .(¢,1)/P(¢, ) is small. We can change the coordinate system so that V is
defined by x" = 0if x = (x',x"), x' = (x(,-**,X,), X" = (X,4+1,°-*,X,) is a splitting
of the coordinates in two groups. By (1.3) we can change the definition of P
and P, so that from now on we take instead

Pt = (Z|POQ )2, P n =( T [POQ[)
a”’ =0

LemMA 3.4. For suitable positive constants &,C,y (depending only on n
and m) the inequality
(3.3 P'EDIPED S e<g

implies that there exists an analytic map 0 — {(6) from Q,, to C" such that
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() L0 =% +0 where £jeR” and |&, ~¢&'| St

(i) 0O -¢| < cet™, 0eQ,,

i) P(@)) = 0.

ProoF. It is no restriction to assume that t =l and that £ = 0. If n>v + 1
we choose a finite number of vectors 0,,---,0, € R*™" such that no polynomial
of degree m vanishes in R *x (Rf;) = R" for every j without vanishing identically.
Some of the polynomials

R3¢ P&, ¢,440)
will then satisfy the hypotheses of the lemma with ¢ replaced by a constant times &.
We may therefore assume that n = v + 1.

By (3.3) with £ = 0, t = 1, we have for a suitable normalization of P
Cy S sup{|PE,L)]; |€| £ 1, |L] S 1} |PE,0)| £ Coe|E'] S 1L

(We use the notation £ for real variables and { for complex variables.) By the
maximum principle it follows that for 0 < d < 1

C,8" < sup{| P&, 0,)|;
We have

El2 L, |G| £8) =M,

n—1
lilaP@/ac,-l S CMy |0 S22, |G| S8,

and in view of Lemma 3.1.7 in [1], there is some real n’ with |#’'| < 1 and r
with 0 < r < § such that

| P(r", 1)

= C,M; when

-

=r.

It follows that
G4 |PC,L)| 2 CaM,[2 2 C,C8™2 if [¢,]| = r and [{' 7| C3 < Cuf2.

If we choose 6 so that C,C,6™/2 = 2C,¢, the equation P(¢’,{,) = 0 must have at
least one root ¢, with |{,| <r < 6 for every real &’ with [&' — 5’| £ C,/2Cs.
By Lemma A.2 in [4], the polydisc {{’; [{’ —n’| < C4/2C;} contains a polydisc
with real center &, [6{,{ £ 1, and fixed radius 2y where the discriminants with
respect to {, of the irreducible factors of P are all different from 0. In view of (3.4),

it follows that for {’ in this polydisc, we can choose an analytic function {,({")
with P({’,{,) = O and [{,

PrOOF OF THEOREM 3.1.  Recall that we only have to show that (3.1) does

< r £ 6. The lemma is proved.
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not hold for any v and compact sets K; = R" and K, =« R"\V provided that
(2.3) is valid with V replaced by V’. Let A be a fixed large positive number and
let ¢ > 0. We can then find & and ¢t arbitrarily large so that

t = Mog|¢|, P&, 0/PE D <e.

According to Lemma 3.4, we take an analytic solution {(f) of the equation
P(L(®) =0, 0€Q,,, and set with R = yt and an integer N to be chosen later

(3.5) u(x) = f e <O N0y 40,
It is clear that P(D)u = 0, and

D*u(0) = J‘C(B)a(l)g(@)d() = f“+0(t| éllﬂl‘l)
so that
HasEXp Ol

lelSu+1
Using (ii) in Lemma 3.4 we obtain

2z suplD"ul < Cexp(Cte'™) (1 + |C|)“ < C1+ Ifl)““/z

lalge K1

if Clet™ < 1)2.
It remains to consider the last sum in (3.1). To do so, we estimate

Du(x) = el'<x’.§o>+i<x",§">f ei(x',9>c(0)¢ei<x".C”(O)*f”)q)ﬁ(e)dg

using Lemma 3.3. Since |x’| > > 0 in K, this gives

(3.6) S= X sup|D"u(x)| £ CN/sy)"| & “exp(Cte"/™).

la|=v K2
We choose N = [dyt/3e] and obtain
S < Cexpt(v[A + Cs'/™ — §y[3e)

which is bounded as & — o0 if A > 6ev/dy and &'/™ < 8y/6Ce. It follows that (2.3)
and (3.1) are in contradiction for large A, so the proof is complete.
As an application, we obtain an improvement of Theorem 1.4.5 of [3]:

THEOREM 3.5. If X is an open set in R" which is P-convex with respect to singular
supports, it follows that the minimum principle is valid for the boundary distance
d(x,(X) on every affine subspace parallel to a linear subspace with ap(V") = 0.
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We refer to [3] for the terminology and the derivation of Theorem 3.5
from Theorem 3.1 for the case I' = V.

4. Fundamental solutions and uniqueness theorems

The first part of Theorem 1.1 can be stated as follows: If P(D)u e C®, u € C*((V)
and op(V') # 0, then ue C®. Thus for general u the singularities of u in {V
together with all those of P(D)u determine uniquely all the singularities of u.
We shall prove more general uniqueness theorems in this section by constructing
appropriate fundamental solutions.

We have seen in section 2 that if o,(V’) £ 0 it follows that for some constant
¢>0andevery A>0

(4.1) lim inf B, (&, Alog| & |)/P(¢, Alog | ¢]) > c.
[4ud-]

Our first lemma interprets this condition in terms of the zeros of P. It is interesting

to compare it with Lemma 3.4.

LemMMA 4.1. LetO # n°eV’, ];1°| = 1, and let §, c be fixed positive constants,
& < 1. Then there exist positive constants ¢;, y depending only on 8, ¢, n, m, such
that

(4.2) Py (& 0[PE 1) >c

implies that for some 6 e V' with 0 < |0| < ot we have
(43) |PE+it® +20+ )| = ¢, PE,0) if zeR, |z| = 1; LeC, |{] < 291.

Proor. We may assume that t = 1 and can drop the variable ¢ from the
notation then. By (4.2) and Taylor’s formula we have

cP(¢) £ By (&) £ CP, (& + in°).

Lemma 3.1.7 in [1] shows that we can choose 0 & V" with 0 < |6| < 6 and

PG +in®) S C|PE+in® +20)|, |z| =1
For small | {] it follows that when | z| = 1
[PC +in® + 20 + 0| 2 e3Py (E+in°) = C, [ L] PE+in® +26) 2 (ca— C2 | (PO
This proves the lemma.

ReMARK. Conversely the inequality (4.3) for { = 0 already implies an estimate
of the form (4.2) so (4.3) expresses all the information given by (4.2).
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Before developing further technical details we shall indicate the main ideas in
our arguments. To construct a fundamental solution one usually interprets the
integral .

m) ™" [ e Pyt ag
by taking it over some cycle, avoiding the zeros of P, which is close to R”. Some-
times the cycle is taken close to the cycle defined by

& ¢+ id(log| &P

where #° is fixed in R” | 0 and 4 is large. The modulus of the exponential is then
| €] 74> so the fundamental solution becomes roughly A(x,#°) times dif-
ferentiable at x (thus a distribution of order — A{x,7°) when {x,7°> <0).
See for example [2, section 5] and the references given there. We shall improve
the construction by replacing the value of /<> |P({) at a point on the cycle
by an average over the zero free region provided by Lemma 4.1. This will be done
so that Lemma 3.3 can be used to improve the estimates. The number N there
will also be taken of the order of magnitude log|&|. To achieve this we must
work in steps where N is fixed so the integration will be split in countably many
picces by means of a partition of unity similar to those used in [2].

First we shall define for arbitrary (&,1) satisfying (4.2) and integers N > 0
a measure N;A,', in C" which will replace the Dirac measure at ¢ + it7°. To do so we
use the function ®} of Lemma 3.3 with n variables and set for u € Co(C") with
the notations of Lemma 4.1

f u@dpf () = @n) ~* fondl// J u€ + it + €70 + 10 \(1)dx.

It is clear that 6 can be chosen as a measurable function of ¢ for every fixed :.
By Cauchy’s integral formula we have for analytic u

(4.4) f u(@)dpN0) = f u(é + it® + 1)®}(r)dx.

o

Lemma 3.3 gives the estimate

(MIPWWW&mgWWMM“WWW%A
0 k<N.
When ¢ > 1 it follows that
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@9 | [ OpOad 0] 5 Cop x|~ on =N i
‘ | x| > 3Nefyt.

We shall later on choose N proportional to ¢ and this estimate is then valid in a
set independent of ¢.

Next we shall construct the required partition of unity. First choose as in [2]
a function ¢ e CF(C) such that [Rel| <3/4 if {esupp ¢, TP —j) = 1 if
[Im{] is sufficiently small and

[od©))ol| < €,|Im¢]", LeC, v =1,2,-

When { € C*and {Im¢{, Im{> < {Rel, Re!) we can define ({, ¢ '/* as an analytic
function which is positive when Im{ = 0, and we set

Y0 = oGOV ~ ).

The following lemma is obvious if we note that <{,{> = |&]|*(1 + O(|n]/|¢
with the Euclidean norm. (See also Lemma 4.4 in [2].)

s

LEMMA 4.2. There is a positive constant ¢, and a positive integer j, such
that when |ImC] < cZIReC|1/2

() j—4f5<|Rel|"" <j+4fs if Cesuppy; and | = jo,
W) Z =11 |t] islarge,
@) |y,0] = ¢, [Im]"|¢)"* D2 ifjzjo, vzoO.

In particular it follows from (i) and (jii) that 2|y (0)|is rapidly decreasing,
if { — oo while |ImC [ = O(log l ¢ [) as will be the case in the constructions below.
The functions ¥ ; will therefore behave essentially as if they were analytic.

Choose two positive numbers 4 and ¢ and set

4.7) t; = Alogj* = 21logj, N; = [et;].
By (i) in Lemma 4.2 we have forj = j,
(4.8) |t; — Alog|£]| < CAJj when & + it;n® e suppy;.

With y; denoting a minor modification of i; which will be defined later on we
set for large j

(4.9) Ej(x) = 2n)™" f 2+ itn°)dé f e' 8 IP(Odugs (0).
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We shall prove that X E; converges in &’ to a parametrix for P, and we shall study
its differentiability properties.
First note that by (4.4) we obtain after differentiation under the integral sign

P(D)E(x) = 2m) ™" f f V(€ + ity e TR dEdr,

The integration with respect to ¢ can be shifted to the real axis by means of
Cauchy’s integral formula, which gives P(D)E; = v; + w; where

v(x) = 2m) 7" f J’ 2,(&)e OO0 (dédr,

w) = =20 [ [ [ e+ )nd e e 00l myagae

0<t<ty

Thus v; is the inverse Fourier transform of the convolution y;*®}!. We wish
Zv; to be equal to the Dirac measure 8, apart from a C* term. This is true if

(4.10) Xy,;*®) — 1 has compact support.

1t

To satisfy this condition we start from the functions y; of Lemma 4.2 and set
0+ i = [0, -0+ mozieo

where k = j + 1 if |¢] > % and k = j — 1 if |£] <j* Since Y, (& +in) =1 if
|| €[ —j| <1/5 and |n|<c,|&|"/?, both definitions give y;(& +in) =1 if
|1 €2 —j] <1/10, |n] < ¢, £]*/*/2 and j = J say. It follows that x; € C™ and
it is clear that (i)-(iii) in Lemma 4.2 and (4.8) remain valid with \; replaced by y;
and a change of the constants involved. Since for large | ¢| withj < | £[|Y* <j +1
the sum in (4.10) is equal to (Y;+¢;4,)* @) * ®)7*1, we obtain (4.10) from
(i) and (ii) in Lemma 4.2. The fact that (iii) in Lemma 4.2 remains valid with ;
replaced by x; shows that for all « and v we have on compact sets

D°w;=0("").

Hence XFw;eC®, and X;°; — d, € C* with convergence in &’ by (4.10).
When u € Cg (R") we have

KEjuy = (2m)" f 1€ + itn®)dé f (= OIPQduzt(©),

and, since # is rapidly decreasing in the support of the integrand, the sum X<E;, u)
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is absolutely convergent. Hence E = X°E; exists in 2’ and P(D)E — §,€ C™.
We could therefore subtract a C® function from E and obtain a fundamental
solution.

We shall finally use (4.6) and the analogous bounds for the derivatives with
respect to x to study the differentiability of E. By (4.8) which is valid with y;
replaced by x;, we can estimate |é| by exp(t;/4) and obtain for large j

l D“Ej(x)f < Ceexp(t(n + la,)/l + 5fx'l —{x,1°> —¢)) if [xl > 3eefy.

Hence XD°E; is uniformly convergent when

2n + | af) + 22| x| = <x,1°) —&) < — 1, |x] > 3eefy.

For any v it follows that E € C" for large A in the set defined by
8| x"| = (x,n°> — 7| x|/20 £ 0, 3eefy < | x| < 6eefy.
Now choose a cutoff function y € Cy (R") which is 1 when ]xl < 3gefy and 0
when | x| > 6ee/y, and set F = xE. Then we have P(D)F = & + o where w e C®

for | x| < 3ee/y and w € C” for large 1 in the set where §|x'| — (x,n°) — | x|/20
< 0. Replacing 3se/y by ¢ we have proved

THEOREM 4.3. Assume that V is a linear subspace of R* with ap(V') # 0.
Choosene V'’ with ln] = 1and 6 with0 < < 1. For ¢ > 0 and positive integers v,
one can then find F,, €& (R") such that |x] <2¢ in suppF, ,, the difference
P(D)F, , — 6, C*{x; | x| < ¢} and

Fmer{x;(Slx’| —{x,n) — y|x]/20 < 0}.

Here x’ is the residue class of x mod V and y is the constant in Lemma 4.1.
If u is a distribution with P(D)u = fe C* for fx( < 3¢, we have for {x[ <e

u = u*(‘So - P(D)Fe,v) +f*Fe,v'
The last term is in C* when |x[ <& If ue C” in a neighborhood of

(4.11) {x;¢ £ |x| < 26, 6|’

+ <x9’1> _YIxI/20 = 0};

it follows that u € C*® in a neighborhood of 0 if we let v — oo. This will give the
following theorem which contains the first half of Theorem 1.1.

THEOREM 4.4. Let ¢y,--+,¢,€ C(X) where X is an open set in R” and let x°
be a point in X where d¢,(x°),--,d¢,(x°) are linearly independent. Assume
that o p(W) # O for the space W spanned by d¢,(x°),---,dp,(x°). If ue 2'(X),
P(DyueC®(X) and ue C*(X_),
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X- ={xeX; ¢;(x) < ¢;(x° forsome j=1,--,v},
then uc C® in a neighborhood of x°.

ProoF. We may assume that x° = 0 and that ¢;(x) = x; + o(| x|), as x 0.
Take n=(—1,---,—1,0,--,0) with v coordinates equal to — 1. When
x esing supp u we have by hypothesis x; = —o(|x|) for j=1,---,v, hence x;—| x|
= o(| x]) then, which gives

8| x|+ x> — 9] x[120 < 6 % |x;| - %l |x;] + (| x]) ~ 7| x|/20)

IA

of| x|) —y|x]/20<0

ife < | x| < 2eand ¢ is small. It follows that u € C* in the set (4.11) and the proof
is therefore complete.
We can now prove another result stated in the introduction:

THEOREM 4.5. Let X; < X, be open convex sets in R". Then an open set
X < X, has the property

(4.12) ueD'(X,), PueC*(X,), ueC*(X,) = ueC°(X)

if and only if for every hyperplane H with op(H') = 0 the set X, intersects
every affine hyperplane parallel to H which meets X.

Proor. The necessity follows immediately from Theorem 1.1. The sufficiency
is proved by substituting Theorem 4.4 with v = 1 for Holmgren’s uniqueness
theorem in the proof of Theorem 5.3.3 in [1].

Theorem 4.3 also gives a converse of Theorem 3.1:

THEOREM 4.6. Let T be a closed convex set in R" and let V be the largest
vector space with T +V=1TI. Then ue%'(R"), singsuppucT implies
ueC®RM ifop(V") #0.

Proor. If 0¢T thereis a proper cone in R"/V containing the image of I" there,
We may therefore assume that I' is the inverse image of such a cone. The set of
points where Theorem 4.3 can be used to show that u € C® is obviously a cone
since £ may be any positive number. In the proof of Theorem 4.4 we saw that it
contains a neighborhood of 0 so it is all of R".

Minimal linear spaces V with op(V’) = 0 are minimal carriers of singularities
also among sets which are not linear:

THEOREM 4.7. Let V be a linear subspace of R* such that op(V’) = 0 but
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ap(W") # 0 for every linear subspace W; V. If P(D)u € C* and singsuppu c V,
it follows that either singsuppu = V or ue C*.

ProoF. Let V be defined by x’ = 0 and assume that for some r > 0, we have
ueC® when | x| <r. Thus ueC® at (x',x") if |x"| <ror|x'| #0.Ifaisa
linear function of x’ it follows that u € C* where

¢(x) = |x"]* —r* —a(x) < 0.

(Here we are using the Euclidean norm.) In fact, if ¢(x) <0 we have either
x" # 0 or lx”l < r. We have grad¢ = (— a,2x") so if x4 = (0,x7), [x’(’,| =r,
the plane spanned by these gradiends is V'@ Rx,. The orthogonal space
W = {xeV; {x,x,) = 0} and since op(W’) # 0 it follows from Theorem 4.3
that u € C* in a neighborhood of the closed ball of radius r. Hence u € C*.

Theorems 4.6 and 4.7 may seem to indicate that for solutions of P(D)u = 0,
the singularities must propagate along linear spaces in the sense that for every
x esingsuppu there is a linear space V with a(V’) = 0 such that {x} +V c
sing supp u. This is known to be true in a number of cases (see [2], [3]) and others
will be given below, but it is false in general. For, consider the differential operator
P(D) = D,D;inR>. Setu = 6(x,)(f(x,) + g(x5)) where f(x,) = Lwhen|x,| <1
and O otherwise, g(x;) = — 1 when 2 < x; < 3 and 0 otherwise. Then we have
P(D)u = 0 and Oesingsuppu but no straight line through 0 is contained in
sing supp u.

A positive result to be improved in section 5 is given in

THEOREM 4.8. Let V be the intersection of all linear spaces W with
op(W") =0. If ue2'(X), P(DyueC®(X) and xesingsuppu, it follows that
the component of x in ({x} + V) N X also belongs to singsuppu.

Proor. If there exists a polygon with vertices x = xg, Xy, -+, Xy in ({x} + V)NX
such that x ¢ singsuppu, then repeated application of Theorem 4.5 shows that
Xn—1s s Xo ¢ singsuppu. This proves the theorem.

If V = {0}, the theorem is of course trivial. On the other hand, if op(V’) = 0,
we obtain complete information on the possible singular support of a solution.

5. Geometric mean estimates
In this section we shall consider the quotient By (&,1)/P(¢,¢) for all & so we
introduce

(.1 odV) = inf inf P (¢, 1)/ P, 1).
t>1 ¢
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THEOREM 5.1. Let X be an open subset of R” with 0e X and V a linear sub-
space with orthogonal space V'. Then the following conditions are equivalent:

(i) For every semi-norm q in C*(X) with support sufficiently near 0, there
are semi-norms q, in C(X} and g, in C°(X \ V) and a constant p with0 < p < 1
such that

9@) £ (@) + )" )5 ueC™(X),  P(Du = 0.
(iiy There exist semi-norms q, and q, in C*(X) and C*(X \ V) respectively
and a constant p with 0 < p < 1 such that
[u0)| £ q,()' "Pq,)°; ueC*(X), P(D)u = 0.
(i) op(V’) # 0.
(iv) IfY is an open set in R* for some k, then
(52 ueZ2'XxY), PDu=0, ueC®(X\V)xY)=ucC>(X x Y).
(v)  (5.2) is valid for some open non-void set Y < R, k=1
PrOOF. We have trivial implications (i) = (if) (and (iv) = (v)). Furthermore
Theorem 1.1 shows that (iii), (iv), (v) are equivalent. By inspecting the arguments
already used in sections 3 and 4 we shall show that (ii) = (iii) and that (iii) = (i).

(The implication (v) = (i) is also easily obtained by functional analysis so we
would not have to use Theorem 1.1.)

(ii) = (iii). Assume that 6%(V") = 0. If
a(f) = ir;f Py (&, 0[P,

we have a(st) = Cs™a(t), s = 1, so the hypothesis infa(f) = 0 implies lim inf,_,
a(t) = 0. Hence it follows from the Tarski-Seidenberg theorem that a(t) -0
as t — oo and that for every ¢ > 0 one can find r|, t,, k¥ so that when ¢ > ¢, there
is some & with | ¢| < ry¢* for which

(5'3) PV’(é’ t)/ﬁ(f’ t) <e.
For such ¢ and t we consider the solution (3.5) of the equation P(D)u = 0. We
have u(0) = 1 and for some u

g:(u) £ C(t + | &|) exp(Cre'/™).

The semi-norm g,(u) is 2 bound for v derivatives of u in a compact set K, = (V,
so] x" >d>0inK,if V¥ = {(x’,x"),x" = 0}. Hence we can use the estimate (3.6)
and obtain with the same choice of N as in section 3
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4,(u) < C(t + | £])” exp(Cte''™ — yt/3e).
When ¢ is so small that

(1 — p)Ce '™+ p(Ce!™ — §y/3e) < 0,

that is, Ce!/™ < pdy/3e, we conclude that (ii) is not valid.

To prove the remaining implication (iii) = (i), we shall reconsider the para-
metrix construction in section 4. It is considerably simpler now since Lemma 4.1
and the definition of ué",, are valid for all £ and t > 1. With t > 1 and a positive
integer N we set

54 Eun) = @0 [ d& [ e 9IPQl
The integral converges in &', that is, E, y is actually defined by
(5.5) CE wuy =(@2m) " f déf 4 — OIPQ)du (0, ue COR").

E, y is a fundamental solution, for by (4.4) and Cauchy’s integral formula

CEqn, P(— D)uy = (27) _J d¢ J 4( = Odugi©)

@n) " f f 4(— & — ity° — 1)@ (1)dédr

@m) " a(©d¢ J D,(x)dt = u(0).

The proof of Theorem 3.1.2 in [1] shows that E, y is regular in the sense of [2].
When estimating E, y it is convenient to assume that

fﬁ(f)‘l dé < .

This condition is no restriction in the proof of Theorem 5.1 since it is always
fulfilled after multiplication of P by an elliptic factor of degree > n. (See sec-
tion 6.) By (4.5) the integral (5.4) is then convergent and

IE,,N(x)] < Cexp(t(é[x’l —<{x,1%) = N) if[x] > 3Ne/yt.
Let ¢ be a positive number and set N = [yet/3e]. Then we obtain for large ¢
|En(x)| < Cexpt(8|x'] = <% — [ x|/18) if e <|x| < 2e.
Let y € Cy° be equal to 1 when le < 4¢/3 and 0 when |x| > 5¢/3. Then choose
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¥, and Y, e Cg with support in {x; &< |xl <2} so that Y, + ¢y, =11in a
neighborhood of supp dy and

8| x| = <x,n® - 7| x]/18 <0 in supp ¥,
8|x'| = <x,9° — y|x|/20 > 0 in suppy, .
Set w; = — y;P(D)(xE). Then it is clear that P(D)(xE) = §, — w; — w,, and
for some positive constants a and 4 we have as t - o
(5.6) e”w, and ¢ o, are bounded in '™,
G 8| x| —(x,r;“)—ylx][20>0 in suppw,.
If P(D)u = 0 in X and ¢ is small, we obtain ¥ = w,*u + w,*u in a neigh-

borhood of 0. For any semi-norm g in C* of a small neighborhod of 0 it follows
that

q(u) £ e™"q,(u) + e*'q,(n)
where ¢, is a semi-norm in C*(X) and g, is a semi-norm in C*(N),
N={x;e< |x| < 2¢, 5|x’l + {0 — y|x|/20 > 0}.
We may assume that g, = g,. Choosing ¢ so that e4**"
with p = a/(4 + a)

(5.8) qa() < 2q,(u)' ""q2(u)".

It is now easy to prove a result containing the implication (iii) = (i) in Theo-

= q,(u)/q,(u) we obtain

rem 5.1:

THEOREM 5.2. Let ¢,,-+,,€ C(X) where X is an open set in R*, and let
x° be a point in X where dp,(x°),--,dd(x°) are linearly independent. Assume
that o%(W) # O for the plane W spanned by d¢,(x°),,d¢,(x°). If U is a
sufficiently small neighborhood of 0 and q a semi-norm in C*(U), one can find
semi-norms ¢, in C(X) and q4 in C*(X_),

X_ = {xeX; ¢x) < $(x°) for some j},
and a number p with 0 < p <1 such that
(5.9) g() < (0,() + 420 4,3 u € C2(X), P(Dyu = O,
ProOF. As in the proof of Theorem 4.4 it follows from (5.8) that
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q(u) = go(w)" ~*q,(w)*
where g, is a semi-norm in C*(X). Replacing X by a smaller neighborhood Y
of 0 we can assume that ¢, is a semi-norm in Y. If Y is sufficiently small we have

go(m) = q,(w) + q5(v), ue C*(X), P(D)u = 0,
where g, is a semi-norm in C(X) and g5 a semi-norm of the same kind as q,.
In fact, by Theorem 4.4 we can choose Y so that P(D)u = 0in X and u e C*°(X_)
implies u € C*(Y), and then the assertion follows from the closed graph theorem.

This completes the proof.
If we combine Theorems 5.1 and 5.2 with the proof of Theorem 4.5, we obtain

THEOREM 5.3. Let X, « X, be open convex sets in R” and let X be an open
subset of X,. Then the following conditions are equivalent:

(i) For every hyperplane H with aa(H) = 0 the set X, intersects every
affine hyperplane parallel to H which meets X.

(i) For every semi-norm q in C®(X) there exist semi-norms q, in C*(X,)
and q, in C(X;) such that for some p > 0

(5.10)  q(u) £ (q,() + 4,(w))' g, ()’; u e C™(X,), P(D)u = O.
Similarly repetition of the proof of Theorem 4.8 gives

THEOREM 5.4. Let V be a subspace of R" such that ¢3(W) # 0 when W is
any subspace which is not orthogonal to V. Let X, be an open set in R", x, € X,
and let X | be an open subset which meets the component of xq in X, N(V + {x¢}).
Then there is a neighborhood X of x, such that (ii) in Theorem 5.3 is valid.

Inspection of the proof shows that the semi-norms in (5.10) will only depend
on m and n in addition to a lower bound for a3(W) when d(W, V") is bounded
away from 0. (See the introduction for this notation.) If P is replaced by a power
of P one can keep the constant y in Lemma 4.1 and therefore the exponent p in
(5.10), and it suffices to multiply the semi-norms in (5.10) by a constant factor.,
This makes it possible to repeat the arguments used in section 1.5 of [3] to extend
Theorem 1.5.1 there. Introduce

(W= sup Kx&[/]x][¢]
xeW.¢eV

which is equivalent to d(W, V'). Let B be a compact family of linear subspaces of
R" and denote by L(P) the set of all localizations of P at infinity as defined in [2].
Thus the elements of L(P) are the limits of the polynomials & — P(¢ + n)/P(y) as
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n — oo. Now assume that for every ¢ > 0 there is a constant ¢(g) > 0 such that
for every Q € L(P) there is some V € B for which

(5.11) og(W) = c(e) when | W,V| 2 e.
Under these hypotheses we have

THEOREM 5.5. If ue@'(X) and PueC®(X) it follows that for every
x € sing supp u there is some V € B such that the component of x in X N(V + {x})
also belongs to singsuppu.

We omit the rather tedious details of the proof. The theorem is of course

trivial if {0} € B so the result is void in general. However, it contains Theorem 4.8
above as well as Theorem 1.5.1 of [3] and Theorem 7.2 of [2].

6. Remarks and examples

If L(P) is the set of all localizations of P at infinity, it is clear that

6.1) ap(V) £ op(V) = inf a(V).

Qel(P)

We shall therefore begin by studying only the function ag(V).

LemMMa 6.1. If p is the principal part of P, then a;) > o).
ProOOF. By definition we have
Pyt z op(MPED,  tz 1.
If we replace &, t by sé, st and let s » + oo after division by s™, it follows that
& D z op(NBE, 1
which proves the lemma.
LemMMA 6.2. If pis a homogeneous polynomial then al?(V) > 0 if and only

if neither p nor any localization of p at infinity vanishes identically in V.

Proor. The necessity is obvious since ag (V) > 0 implies o(; (V) > 0 for every
localization ¢ in view of (6.1). To prove the sufficiency it is enough to show that
the inequality
6.2) P = Chy(L, 1)

is valid when t = 1, for both sides are homogeneous in (&,7). When t # 0 we
have p (&, 1) > 0 because p(¢ + #) would otherwise vanish identically for neV
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so the highest order term p() with respect to # would have to vanish in V. Hence
(6.2) is valid when ¢t = 1 and & is in a compact set. If (6.2) were not valid we
could therefore find a sequence &; — oo such that §,(¢;,1)/p(£;,1) = 0. If g is a
corresponding localization at infinity we have q() = 0 for all #eV, which
contradicts the hypothesis.

REMARK. If p = 0in V then the localization of p at infinity in V also vanishes
in V so the condition that p £ 0 in V could be dropped.
Combination of (6.1) with Lemmas 6.1 and 6.2 gives

THEOREM 6.3. If ap(V) # O it follows that the principal part of Q does not
vanish identically in W if Q € L(P) and W is a linear space with dimW = dimV
sufficiently close to V. If 6%(V) # O the principal symbol of P does not vanish
identically in W either.

REMARK. When n = 2 it is easy to show that conversely ap(V) # O if the
principal symbol of P is not identically 0 in V.
If Q € L(P) is not a constant and if

AQ) = {neR"; 0¢ + m) = 0O},

which is a linear space, it follows that ap(A(Q)) = 0. The same is true for the
space generated by A(Q) and a real zero of the principal part of Q. By Theorem 1.1
it follows that the equation P(D)u = 0 has a solution with singsuppu = A’(Q)
or a characteristic hyperplane in A’(Q) (with respect to Q). The singular support
may also be taken as the limit of such spaces. Thus Theorem 1.1 improves the
results proved in section 3 of [2]. In section 6 of [2] we concluded that unique
continuation of the singularities of solutions of P(D)u = 0 across the hyperplane
{x,N) = 0 requires that a neighborhood of N is non-characteristic for every
Q e L(P). This is also a special case of Theorem 1.1 in view of Theorem 6.3.
We shall now give examples which show that the condition is not always suf-
ficient.

ExAMPLE 6.4. Let g be a real homogeneous polynomial and V a linear subspace
of R", n = 3, such that g does not vanish identically in ¥V but af;(V) = 0. A suf-
ficient condition for this is that 0 # ¢'(5) € V' for some real n # 0 with g() = 0.
In fact, £ > {&,q'(n))> is then a localization of ¢ at infinity. If £, = 0 in V and
n 2 3 we may therefore take q(&) = EZ+ -+ + €2, — &,_ & = (0,++-,0,1,0).
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By Theorem 4.1.9 in [1] we can choose a hypoelliptic operator P(D) such that the
principal part is ¢*. Since aff(V) = 0 it follows from Lemma 6.1 that o5(V) = 0,
although the principal part of P does not vanish identically in ¥, if V is not gen-
erated by 5. In particular we conclude that in general the continuation of solutions
of a hypoelliptic equation across a non-characteristic hyperplane is not ‘‘Holder
continnous’’ if the number of variables exceeds 2.

ExAMPLE 6.5. Let P(¢), £ €R”, be independent of £, but as a function of
&y, &,— 4 be the hypoelliptic polynomial in example 6.4. The only localizations
of P at infinity are then constants or translations of P, so their principal symbols
do not vanish identically in W if W is close to V. (We include the £, axis in V
also.) But op(V) = aB(V) = 0, which shows that to examine if ox(V) # 0 it
does not suffice to consider the characteristics of all localizations at infinity.

The results proved in this paper agree well with the classification of differential
operators defined in [1, section 3.3].

THEOREM 6.6. If P’ and P” are equally strong then ap(V) = 0 is equivalent
to op(V}) =0.

Proor. By Theorem 3.3.2 in [1] the hypothesis implies that

Cl épl/(ést)/ﬁl(gst) é CZ: €ERna t> 1‘
From section 2 we know that op (V) = 0 if and only if for some sequences £; —
inR"and ¢; - oo in R with t; = O(l £j|”) for every e >0
ﬁV,(é,‘, tj)/P’(éjs t)—0.

Passing to a subsequence we may assume that the limits

Q'(Q) = lim P'¢; + 1,)/P'(€;1),Q°©) = lim P&+ D[Pt

Jj=w Jj—w
exist. In fact, the supremum of | P'(¢; + t,6)|/P"(¢;,;) when & varies over the
unit ball is 1, and that of [P”(éj + tjé)]/f”(éj, t;) lies between C; and C,. The
limits are therefore not identically 0 and

COENS0CEN S CAEH >0
Letting t —» 0 we conclude that Q" = 0 when @’ = 0. Since Q' = 0 in V it follows
hat Q" = 0 in ¥, so that Py(;,t,)/P'(¢;t)~0 as j— co. Hence 5. (V) =0
and the theorem is proved.
THEOREM 6.7. If P = P,P, then op(V)> 0 (resp. cp(V) > 0) if and only if
ap (Vap,(V)> 0 (resp. agl(V)agz(V) > 0).
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Proor. This is an immediate consequence of Lemma 3.3.1 in [1].

THEOREM 6.8. If P is semi-elliptic then o o(V) > 0 if and only if the principal
part of P does not vanish identically in V.

Proor. The necessity follows from Theorem 6.3. To prove the sufficiency we
recall that semi-ellipticity means that for certain positive integers m,,---,m,
we have with | a: m| = Xo;/m;

PO = X af
|asm| <1
where
P& = X af°#0,0#ecR"
a:m] =1

Assume that m; =--=m,>m,,, = --- =2 m,, and set x' = (xy,,X,),
X" = (X, 415> X,). We wish to prove that if N = (N’, N"), N’ # 0, then
(6.3) Y| PO < ¢ ZKD,NYPE P, 1z 1.

« J

To do so we note that if we assign the weight ch: ml +j/m, to &%, then all
terms are of weight < 2 and the terms of weight 2 are

<D, N p(@)| 1>
in the right hand side. Since N’ # 0 this sum is # 0 when (£,7) # 0. Hence
2 Igjl 2m1+ t 2m1§ C Z l <D,N’>Jp(€), thj.
1

It follows that (6.3) is valid for another C if t + [ ¢ I is large enough, which proves
the theorem.

That ““Holder estimates’ are valid for the continuation of solutions of semi-
elliptic equations across a non-characteristic surface also follows from the ar-
guments of F. John [6] in view of the analyticity of the solutions along the inter-
section of the characteristic planes proved in [1, section 4.4].

Next we consider operators with simple characteristics although the results
of [2], [3] are already complete for them.

THEOREM 6.9. If P is of principal type, we have op(V) > 0 if and only if
o%(V) > 0 and this is true if and only if

p'M)¢ V' when neR"\ 0 and p(n) = 0.

Proor. Since an operator of principal type is as strong as its principal part
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([1, Theorem 3.3.7]) we may assume that P is homogeneous in view of Theorem
6.6. But then the theorem follows from Lemma 6.2 and the remark following
the lemma.

Finally we give an example containing some new information.

ExamPLE 6.10. Let p be a real homogeneous polynomial of degree m with

p'(€) # Ofor £eR"\ 0, and let
P=p*+q+r

where g is homogeneous of degree 2m — 1 and r is of degree 2m — 2. Then

a) oa(V)> 0if and only if p'(€) ¢ V' for all £eR"* | 0 with p(&) = 0.

b) op(V) > 0ifand only if p'(£) ¢ V' for all £ e R" | 0 with p(§) = Imq(£) = 0.

Since 63(V) > 0 = a;,’(V) > 0 the necessity follows from Theorem 6.9 in case a).
To prove the necessity in case b) we assume that neR* \ 0, p(n) = Imgq(y) = 0.

Replacing n by — # if necessary we may assume that g() < 0. If q(y) = 0 we
note that

PE+m* 72" s p'm), & + g’ &y +¢,  to o,
so the right hand side is a localization of P at infinity and p'(n)¢ V' by
Theorem 6.3. If g(n) <0, on the other hand, we choose 8 €R"\ 0 so that
{p'(n),0>* + q(n) = 0 and obtain

P& + 2 + 1) 7*" — 2{p' (), EX<p'(n), 6> + ¢

and conclude again that p’'(i) ¢ V'.

In proving the sufficiency, we assume that V is defined by &” = (£, ¢y, -+, &,) = 0.
In case a) we note that p does not vanish identically in V since p'(¢) would then
be in V' for all £ e V. Hence Py (&,1) = ct®™ so there is nothing to prove except
when t/ lfl is small. Then we have to prove that for t > 1

(6:4) |[P@|+t|p@) || &]|™ " + 2| €] = CPy(&,0).

The estimate of | P(é)[ is obvious and it implies the others outside a conic neigh-
borhood of the zeros of p. Since

3 o%pjoct=12 % |0pjog,|? >0
1 1

at the zeros of p, we obtain the required estimate of t*[¢|*"”2 in a conic
neighborhood I" where we also require that dp/of’ # 0. Hence
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¢ 5 | poplog;| < 1 X |2popoc, +0a/ot;| + Ct| €| < C'By(E, 0
1 1

which gives (6.4) in T". In case b) we have to supplement the preceding argument by
observing that if I is a closed cone where Imq # 0, we have | £[*"™* + | p(&)[?
< C|P(¥)| in T when ¢ is large. Hence t|p(£)| |§|'"'1 < C| P(é)] when t* < | ¢|
and eI,
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